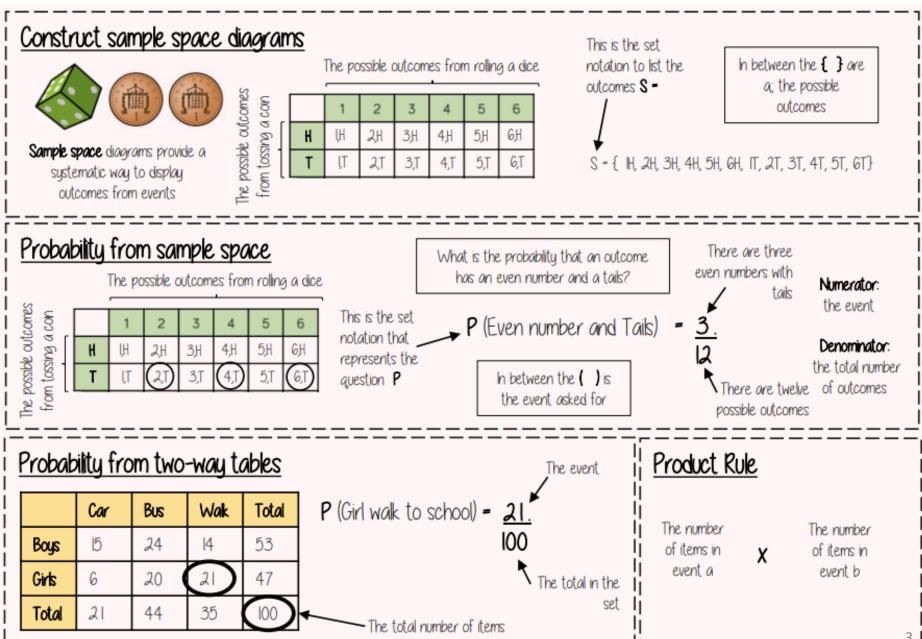
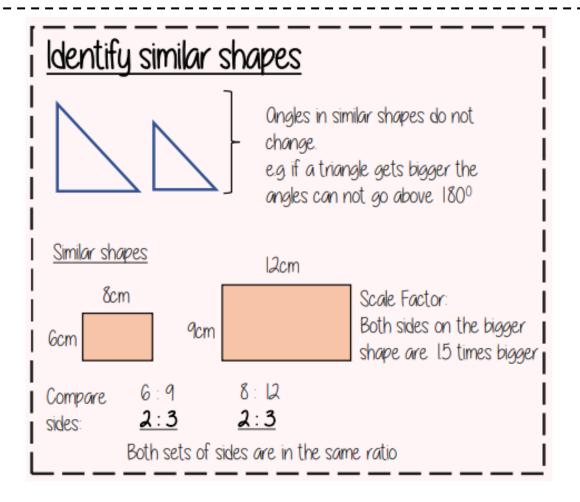
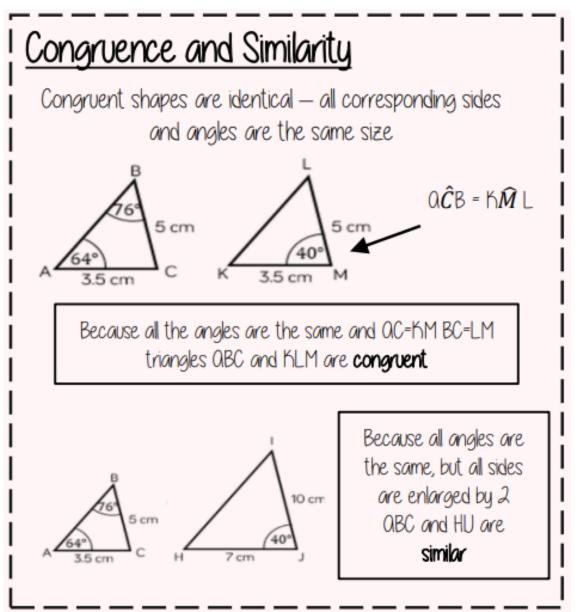
LIGHT HALL KNOWLEDGE MATS Year 9 Summer 1


Liigiisii	
Maths	3 – 5
Science	6 – 9
History	10
Geography	11
French	12
Spanish	13
ICT	14
Technology	15 – 18
Music	19

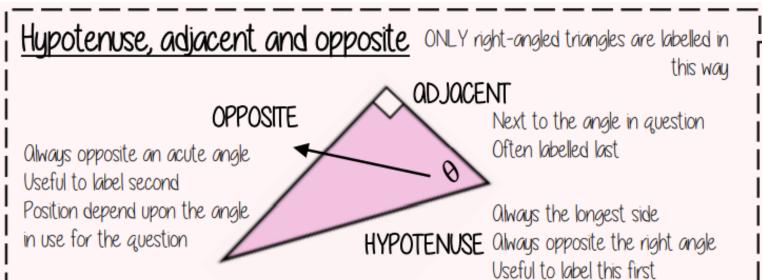
KEY WORD	DEFINITION	IMAGE	IN A SENTENCE	LOOK, COVER, WRITE, CHECK	LOOK, COVER, WRITE, CHECK	Of Mice and Men- Summer A 1. There is a list of key vocabulary	
juxtaposition	Two things placed together with contrasting effect.	3	Lightness and darkness are juxtaposing colours.			linked to your studies this half term. Learn the key words and definitions.	
inequality	The difference in social status between people.	\$ 1	Inequality exists in all societies.			2. Below there is a link of key knowledge. Understand what	
marginalisation	The treatment of a group as insignificant.		The marginalisation of the poor is cruel.			they all are. Grammar Knowledge:	
periphery	The outer limits and edge of a thing or object.	刁	I pushed the girl to the periphery.			Conjunctions [08/04/24]: a conjunction is a part of speech that	
thresholds	The passing and barrier between two things.		He passed through a threshold to enter.			connects words, phrases, or clauses. Examples include: include and, or, but, because, for, if, and when.	
idolisation	The act of admiring strongly.	بارد عالو	Some people idolise pop stars.			Simple, complex, compound [24/04/24]: Simple sentences contain	
objectification	Degrading a person to be like an object.	1 9	Women are objectified in anti-feminist places.			a single independent clause. Compound sentences also contain only independent clauses - two or	
anguish	Severe mental and physical pain or suffering.	(# #) o o o o o o o o o o o o o o o o o	I felt anguished at the situation.			more of them. Complex sentences have both an independent and one or	
perspective	A person's point of view.		From my perspective, it is not appropriate.			more dependent clauses. Clauses[06/05/24]: A clause is a group of words that contain a	
prejudice	An unfair feeling of dislike of a person due to race ect.		There was prejudice in 1920s and 30s USA.			subject and a verb. You get the independent clause which can be a	
morosely	In a bad, sullen and gloomy way.		He morosely entered the English classroom.			sentence by itself and does not need more information to clarify and a subordinate clause which depends on	
Antithesis	A person or thing that is the direct opposite of another.	+ +	Salty and sweet are the antithesis of each other.			information from the independent clause to make sense.	

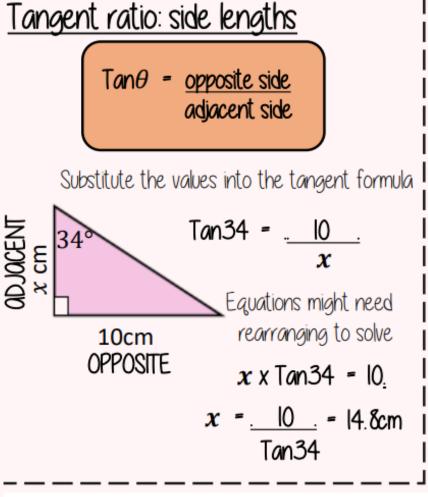
Probability

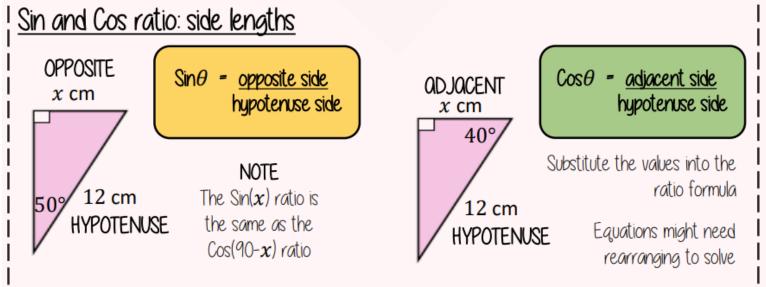

Key Words


- Probability –
 the chance
 that
 something
 will happen
- Biased a
 built in error
 that makes
 all values
 wrong by a
 certain
 amount

Key Words


- Scale factor the multiplier of enlargement
- Congruent The same size and shape





<u>Trigonometry</u>

w.b. 06/05/2024 w.b 20/05/2024

Chemistry topic 1: Atomic structure

9. Properties	– Groups 1 an	id 7									
Group 1 (I)	Melting point	Density	Reactivity	Group 7 (VII)	Melting point	Density	Reactivity	Group 0 (VIII)	Melting point	Density	Reactivity
Lithium (Li)	Decreases down the	Increases down the	Increases down the	Fluorine (F)	Increases down the	Increases down the	Decreases down the	Helium (He)	Increases down the	Increases down the	INERT
Sodium (Na)	group	group	group	Chlorine (CI)	group	group	group	Neon (Ne)	group	group	(DO NOT REACT)
Potassium (K)				Bromine (Br)				Argon (Ar)			
Rubidium (Rb)				lodine (I)				Xenon (Xe)			

10. Transition metals (TRIPLE ONLY)		
Properties compared to group 1 elements	Other useful properties	
More dense	lons can have different charges	
Harder	Form coloured compounds	
Stronger	Good catalysts	
Higher melting points		
Less reactive		

11. Common separation techniques

1. Chromatography

Used to separate a mixture of dyes in ink.

2. Filtration

Used to separate insoluble solids from liquids (e.g. sand from water).

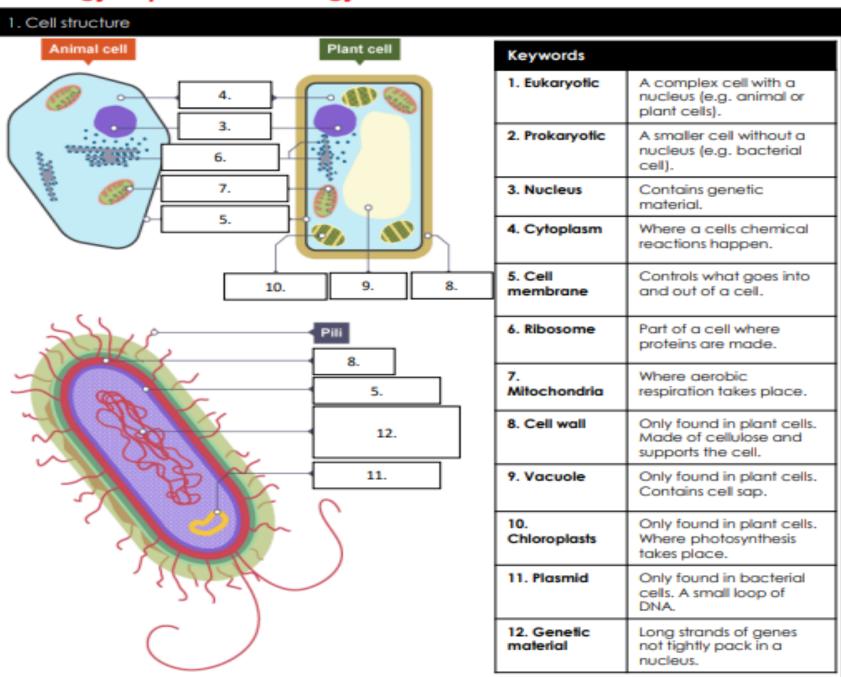
Evaporation

Used to separate a soluble salt from solution. The solution is heated strongly in an evaporating basin until dry crystals are left.

4. Crystallisation

Used to separate a soluble salt from solution. The solution is heated gently in an evaporating basin until crystals form; the remaining liquid is filtered out.

5. Simple distillation


Is used to separate a liquid from a solution – e.g. water from ink. A condenser is used to cool hot gas until it forms a liquid.

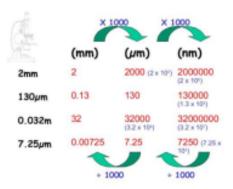
6. Fractional distillation

Used to separate a mixture of liquids with different boiling points.

)

Biology Topic 1: Cell Biology

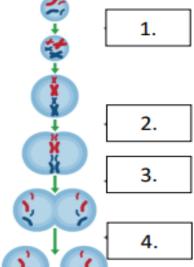
2. Specialised cells


Keywords	
Differentiation	A stem cell turning into a specialised cell
Stem cell	A special type of cell which can turn into other specialised cells
Adult stem cells	Can only produce certain types of cell -found in bone marrow
Embryonic stem cells	Can produce all types of cells - controversial
Meristems	Where plant stem cells are found

Sperm cells	Take male DNA to the egg Tail to help it swim Lots of mitochondria for energy
Nerve cells	Carry electrical signals around the body Long to cover long distances Branches to connect to other cells
Muscle Cells	Muscle cells contract Long so have space to contract Lots of mitochondria for energy
Root hair cells	Root hair cells absorb water and minerals Long hairs Big surface area for absorption
Phloem Cells	Phloem cells transport sugars (plants) Long tube joined end to end
Xylem cells	Xylem cells transport water (plants) Long tubes joined end to end Hollow so water can flow through 7

Biology Topic 1: Cell Biology

3. Comparing types of microscope				
Type of microscope	Advantages	Disadvantages		
Light microscope	Cheaper Can see colours Can see live specimen	Lower magnification		
Electron microscope	Expensive Higher magnification (x1000 more)	Can only see dead specimen No colour		


Calculating magnification			
magnification =	size of image actual size of object		
actual size of obj	ect = size of image magnification		

8. Transport	8. Transport in cells				
Keywords	Definition	Examples			
Diffusion	The passive movement of a substance from an areas of high concentration to an area of low concentration	Oxygen and carbon dioxide in the lungs Perfume in a room			
Osmosis	The movement of water molecules across a partially permeable membrane from a less concentrated solution to a more concentrated solution.	Water uptake in plants Water absorption in the intestine			
Active transport	Movement of a substance from a lower concentration to a higher concentration, against the concentration gradient. Uses energy.	Mineral absorption by roots Glucose absorption by the intestine			
Surface area to volume ratio	The surface area divided by the volume expressed as a ratio	All high Unicellular organisms Alveoli in the lungs Villi in the intestines			

Cell division				
Keywords				
Chromosomes	Long strands of DNA containing genes. Found in 23 pairs in a human			
Cell cycle	The process the cell goes through to divide			
Mitosis	A type of cell division that creates 2 identical daughter cells			
Therapeutic cloning	Using an embryo create to have the same genes as the patient. Controversial			

	7. St	ages of mitosis
	1.	The cell grows and copies all its DNA, mitochondria and ribosomes
	2.	The nucleus dissolves and the copied chromosomes pair up
	3.	The chromosomes are pulled to opposite sides of the cell
	4.	The cytoplasm and cell membrane divides making two identical cells
Ι.		

	9. Factors that effect the rate of diffusion/osmosis						
1	Speed up	Slow down					
]	High concentration gradient	Low concentration gradient					
]	High temperature	Low temperature					
	High surface area of membrane	Low surface area of membrane 8					

Physics topic 1: Energy

1. Key Term	Definition
Kinetic energy (KE)	The energy an object has because it is moving
Gravitational potential energy (GPE)	The energy an object has because of its position
Elastic potential energy	The energy stored in a springy object when you stretch or squash it
Thermal energy	The energy a substance has because of its temperature
Chemical energy	The energy stored in fuels, food, and batteries
Conservation of energy	Energy cannot be created or destroyed only transferred.
Work done	The energy transferred by a force
Dissipation	The process of energy being transferred or lost to the surroundings
Friction	A force that opposes movement
System	An object or group of objects
Closed system	An isolated system where no energy transfers take place into or out of the energy stores in the system.
Useful energy	Energy in the place it is wanted in the form that it is needed in
Wasted energy	Energy that is not usefully transferred, usually as

2. Calculating efficiency

1.Efficiency = Useful output energy transferred by the device

Total input energy supplied to the device

thermal.

- 2. Efficiency = Useful power out
 Total power in
- 3.No device can be more than 100% efficient.
- 4.Machines waste energy because of friction between their moving parts, air resistance, electrical resistance, and noise.

Energy is transferred by:

- Heating
- Waves
- Electric current
- Force when it moves an object.

3. Equations to recall and apply

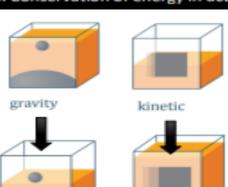
Work done, W = force applied, F x distanced moved, s (joules, J) (newtons, N) (metres, m)

Change in objects Gravitational field Change of gravitational potential = mass, m x strength, g x height, Δh energy store, ΔE_p (kilograms, kg) (newtons per kilogram, N/kg) (metres, m)

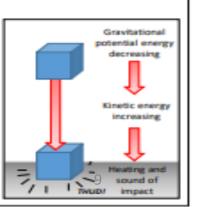
Elastic potential energy, E_e = ½ x spring constant, k x extension², e ²

(joules, J) (newtons per metre, N/m) (metres, m)

Kinetic energy, E_k = ½ x mass, m x speed², v²


(joules, J) (kilograms, kg) (metres per second, m/s)

Power


- 1. The more powerful an appliance, the faster the rate at which it transfers energy
- 2. Power, P (watts, W) = Energy transferred to appliance, E (joules, J)

 Time taken for energy to be transferred, t (seconds, s)
- 3. The power wasted by an appliance = total power input useful power output

6. Conservation of energy in action

- A falling object:
- Decreases its GPE store
- Increases its KE store as it falls
- Waste energy transferred as thermal and sound

Year 9- Summer 1: How have political ideologies changed Britain and the world? Pre-war Jewish Life and the Holocaust

March 22nd 1933-First concentration camp set up at Dachau for

April 1933: Jewish people are not allowed to work for the September 1935-Nuremberg Laws passed- 'Jew' now a race by blood

April 1938-Jews are eliminated from the

September 1939- Jewish ghettos set up June 1941- First discussion of the Final Solution. Einsatzgruppen begin mass killings. 8th April

July 1933-30,000 people in concentration June 30th 1934-Night of the Long Knives- persecution of homosexuals also begins 9th-10th November 1938-Kristallnacht-

September 1939-WW2 begins and Einsatgruppen begin killing squads. January 1942-Wannsee Conference to discuss Final Solution

Enquiry 1: What was life like for Jewish people before Nazi persecution?

Key words:

Jewish: A person who believes in Judaism- originates from Israelites and Hebrews

Persecution: hostility and ill-treatment, especially because of race or political or religious beliefs; oppression.

Anti-Semitism: Anti-Jewish (similar to racism)

What I need to know:

- Hitler was not the first person to be anti-Semitic in History although many people think he started it.
- Jewish people lived perfectly normal lives before the rise of Hitler's dictatorship- they played football, had friends, went to parties, and socialised like everyone else.
- There were examples of anti-Semitism in their everyday life, for example being excluded from clubs as early as 1933 and facing discrimination, but despite this there were many examples of close knit Jewish communities.
- Jewish people tended to live in Jewish districts and stick to their community spirit.
- Jewish soldiers were an essential part of WW1 and many felt very patriotic towards their country

Enquiry 2: How were Jewish people persecuted? Key words:

Nuremberg Laws: Laws passed to make Jewish people a 'race' rather than religion and take away their German citizenship rights.

Kristallnacht: Night of Broken Glass- a night of attacks on Jewish owned businesses, homes and synagogues

Pogrom: An organised attack on a specific group – i.e. Kristallnacht **Final Solution:** Nazi plan to kill all the Jews (genocide)

What I need to know:

- Persecution of the Jews in Nazi Germany started off as social acts- for example boycotting shops, excluding Jewish people from sports clubs etc. but got worse as time went on- particularly after the 1935 Nuremberg Laws
- The Nuremberg Laws stated that a person was Jew by race/blood not religion and banned any relationship between a Jew and non-Jewish German.
- Another turning point in Jewish persecution was Kristallnacht on 9th-10th
 November 1938. This was the destruction of Jewish shops, homes,
 synagogues and even violent attack on people.
- The Final Solution title refers to 'The Final Solution to the Jewish problem' in Nazi Germany- Hitler wanted to kill all the Jews and erase them from Germany.
- The Final Solution has one of the highest death tolls in modern history- in Czechoslovakia 73% of the Jewish population was killed, in Germany it was 69%, in Hungary it was 78%, Poland 90%, and even France and Belgium lost 27%.

Enquiry 3: How did Jewish people fight back?

Key words:

Resistance: To go against a person/group **Ghetto:** An area where Jews were moved to.

Concentration camp: Large prison set up to house those who went against the Nazi beliefs.

What I need to know:

- Many Jewish people living in Ghettos resisted the Nazis by continuing to hold religious festivals in secret or children studying in secret. This was very dangerous as if they were caught they could be shot.
- Although it was extremely difficult there were armed uprisings in concentration camps by Jewish inmates against the Nazi guards.
- At Trebilinka in 1943 Jewish prisoners seized weapons from the Guards and set the building on fire they tried to get out the main gate of the camp but many were killed.
- At Sobibor in October 1943 Jewish prisoners killed 12 Nazi guards and 300 escaped, of these 300 50 survived until the end of the war.
- At Auschwitz Birkenau in October 1944 250 Jewish prisoner blew up buildings all were killed for their resistance.
- There was also resistance in the ghettos. The most famous was in the Warsaw Ghetto in April – May 1943. Jewish fighters shot at the Germn police and army who had come to move them. The Nazis responded by <u>burning down the ghetto</u> killing 7000 Jews.

Homework 1: Key Terms

Ecosystem - the name for an area where living and non-living organisms live together

w/c 8th April

Biome - Large scale ecosystem

Biotic factor - The living things in an ecosystem

Abotic factor - The non-living parts of an ecosystem

Desertification: when land is gradually turned into desert, usually on the edge of an existing desert.

Erosion: the wearing away or breaking down of rock

Transportation: the movement of eroded rock

Deposition: where eroded material has been dropped due to lack of energy

Urbanisation: the increase in the proportion of people living in urban areas.

Deprivation: a standard of leaving below that of the majority in a particular society that involves hardships and lack of access to resources

ļ	Homework 2:	Economic development in	biomes w/c 22 nd April
		Tropical Rainforest	Hot Desert
	Opportunity	Cattle ranching Logging Mineral extraction Agriculture	Mineral extraction Tourism Energy Farming
	Challenge	Loss of habitat and biodiversity Displacement of tribes Less trees to absorb carbon dioxide	Extreme temperatures Accessibility Water supply

Homework 3 and 4:

w/c 6th and 20th May

The **Favela Bairro Project** (Favela Neighbourhood Project) began in Rio de Janeiro in 1994 and ran until 2008. It aimed to recognise the favelas as neighbourhoods of the city in their own right and provide the inhabitants with essential services.

This project was undertaken by the local authority, who relocated some residents from the most unsafe houses sited on steep hillsides. Brick houses were built with electricity, running water and sanitation pipes installed. Some people were allowed to buy these homes, and were given legal rights to the land. In Complexo de Alemao (German complex) favela, improvements included providing 26,000 residents with access to a clean water supply and drainage systems. It also involved the installation of street lighting and the construction of widened streets and pavements, which made the favela more accessible, especially for refuse collection and emergency services. Street lighting improved safety for residents, especially at night. The council installed underground cables, providing residents with a permanent electricity supply so they no longer need to tap into supplies illegally.

In Rio, schemes like these have had some success as living conditions have improved for some people. However, they are restricted by the steep surrounding mountains. Occasional heavy rains can also lead to flooding, impeding development. There is also not enough funding to make improvements for everyone living in favelas.

Faculty of MFL - French Studio 3 Module 4: spécial vacances

1. W/B 1902

Les mots essentiels • High-frequency words

à l'avenir in the future alors so Tier 2 c'est it is vocabulary

twice a week

they are cesont first d'abord

deux fois par semaine en général in general as well as that en plus

ensuite then finalement finally where parce que because when quand tous les jours every day très very

Voilà! That's that!/ Here you

are!/There you go!

horse riding

Les activités de • Holiday activities vacances

Je fais ... I do/I go ... du canoë-kayak canoeing du ski skiing du snowboard snowboarding du VTT mountain biking de la voile sailing de la planche à voile windsurfing

29/04

de l'équitation

2. W/B 04/03

Les vacances • Holidays

Je passe mes vacances ... I spend my holidays ... au bord de la mer at the seaside à la campagne in the countryside à la montagne in the mountains at a holiday camp en colo Je vais en vacances ... I go on holiday ... avec ma famille with my family avec mes parents with my parents with my friends avec mes copains

Je reste... Istay... une semaine one week quinze jours a fortnight

dix jours ten days

Mes rêves • My dreams

Un jour, je voudrais ... One day, I would like

to ...

15/04

aller au pôle Nord go to the North Pole descendre l'Amazone go down the Amazon in

en canoë a canoe faire de la plongée go scuba diving

sous-marine

faire des sports extrêmes do some extreme

sports

faire un safari en Afrique go on safari in Africa habiter sur une île live on a desert island

déserte

Common instruction phrases

Écoutez – listen répondez - answers Lisez - read remplissez – fill in Écrivez – write parlez - speak

Décrivez – describe ouvrez ton cahier - open your book

Les réactions • Reactions

Ouais! Cool! Yeah! Cool! Bonne idée! Good idea! Pourquoi pas? Why not? Quelle horreur! How horrible! Tu rigoles! You must be joking! Ce n'est pas mon truc. It's not my kind of thing.

Les verbes pronominaux • Reflexive verbs

Je me baigne. I swim. Je me coiffe. I do my hair. Je me douche. I have a shower. Je me fais bronzer. I sunbathe. Je me fais piquer. I get stung. Je m'ennuie. I get bored.

Des vacances • Disastrous holidays désastreuses

J'ai oublié mon passeport. I forgot my passport. J'ai perdu mon I lost my purse.

portemonnaie.

J'ai cassé mon appareil I broke my camera.

photo.

J'ai pris un coup de soleil. I got sunburnt.

J'ai mangé quelque I ate something bad.

chose de mauvais.

On a raté l'avion. We missed the plane.

Aïe! Oh, no!/Ouch! Mince! Damn! Oh là là! Oh, dear! C'est pas possible! No way!

Quel désastre! What a disaster!

3. W/B 18/03

À la base de loisirs • At the leisure park

J'ai ...

II/Elle a ... He/She... fait du tir à l'arc did archery fait du trampoline did trampolining fait de l'escalade went climbing

Je suis ... *I* ...

II/Elle est ... He/She... allé(e) à la pêche went fishing

Les mots essentiels • High-frequency words

où? where? who with? avec qui?

combien de? how much?/how many?

what?

12

que? qu'est-ce que?

usually, normally normalement quel/quelle which/what (a)

alors so/therefore

donc

13/05

quand when mon/ma/mes my ton/ta/tes your his/her son/sa/ses d'abord first of all ensuite then/next puis then après afterwards finalement finally

Light Hall Yr 9 Knowledge Mat Spanish HT5

Jovenes en acción

He/She has breakfast.

Las nacionalidades Nationalities

¿Cuál es su nacionalidad? What is his/her nationality? Es... He/She is... Argentinian argentino/a boliviano/a Bolivian colombiano/a Colombian Mexican mexicano/a

North American norteamericano/a peruano/a Peruvian inglés/inglesa English español(a) Spanish pakistaní **Pakistani**

Common instructions phrases

Lee- read escucha – listen

Explica – explain pon-put Escribe – write apunta – fil in

traduce - translate Empareja – pair up

8th April

Sobre su vida About his/her life

¿De dónde es? Where is he/she from? Es de... He/She is from... ¿Dónde vive? Where does he/she live? Vive en... He/She lives in... ¿Con quién vive? Who does he/she live with? Vive con sus padres. He/She lives with his/her parents. ¿Qué hace por la What does he/she do in mañana? the morning?

22nd April

·	his/her things.
Va al insti.	He/She goes to school.
¿Qué hace durante el día? What does he/she do	
	during the day?
Ayuda a su madre.	He/She helps his/her
	mother.
Estudia.	He/She studies.
Hace los deberes.	He/She does his/her
	homework.
Prepara la cena.	He/She prepares dinner.

Mis derechos My rights

Tengo derecho... I have the right... al amor y a la familia to love and to family al juego to play a la educación to an education a la libertad de expresión to freedom of expression a la protección to protection a un medio ambiente sano to a healthy environment No puedo... I cannot... dar mi opinión give my opinion ir al insti(tuto) go to school play with my friends jugar con mis amigos breathe respirar

salir a la calle go out in the street vivir con mi familia porque... soy un(a) chico/a mi padre es muy estricto tengo que ganar dinero tengo que trabajar el aire está contaminado en mi país a veces hay violencia ¡No es justo! Es inaceptable.

live with my family because... I am a boy/girl my father is very strict I have to earn money I have to work the air is polluted in my country sometimes there is violence It isn't fair! It is unacceptable.

¿Cómo vas al insti? How do you get to school?

	Coome rae ar mon.	men de jee gerne eer
	Voy a caballo.	I go on a horse.
_	Voy a pie.	I go on foot. / I walk.
S	Voy en autobús.	I go by bus.
	Voy en barco.	I go by boat.
	Voy en bici.	I go by bike.
	Voy en coche.	I go by car.
	Voy en metro.	I go by underground.
	Voy en tren.	I go by train.
	¿Por qué?	Why?

Desayuna.

Porque es... Because it is... quicker than walking más rápido que ir a pie más verde que ir en autobús más barato que ir en taxi más práctico que ir en coche más seguro que nadar la única opción the only option

greener than going by bus cheaper than going by tax more practical than going by car safer than swimming

6th May

20th May

Un mundo mejor A better world

Para ser un instituto verde	In order to be a green school
apagamos la luz	we switch off the light
conservamos electricidad	we save electricity
no malgastamos agua	we don't waste water
plantamos árboles y flores	we plant trees and flowers
reciclamos botellas de plástico	we recycle plastic bottles
reciclamos papel y vidrio	we recycle paper and glass
reducimos el consumo eléctrico	we reduce our consumption of electricity

tenemos un jardín	we have a garden
vamos en bici	we go by bike
Para hacer un mundo	In order to create a
mejor	better world
vamos a escribir cartas	we are going to write
para Amnistía	letters for Amnesty
Internacional	International
vamos a organizar	we are going to organise
un evento	an event
vamos a recaudar fondos	we are going to raise funds
vamos a vender pasteles	we are going to sell cakes

How will the client tell me what they want?

This can be done using several different methods:

W/c 15th April 24

Client Brief: This is a statement of what is needed. This will be the method used to express what the client needs in your set assignments.

Specification: This is a more detailed version of a client brief. It will supply comprehensive details on all aspects of the clients product. This is a more official method and will normally contain signatures, dates and version numbers.

Script: These are used by films, TV programs and plays. You would breakdown the script into it different elements, such as:

- Location
- Dialogue

Key Term

- Lighting
- Camera shots and movements

quirements

Genre: This will depend on the type of product and its purpose.

Product	Some examples of Genre		
Website	Gaming		
	Retail		
	Services		
Comic Book	Action and Adventure		
	Superhero		
	Romance	\S	
	Slice of life	'c 1	
Music	Рор	W/c 13 th May 24	
	Rock	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Rap	1ay	
	Heavy Metal	/ 2/	
	Classical	4	
Game	RPG		
	Simulation		
	Puzzle		
	Sport		

W/c 29th April 24

Key Terrii	Definition
Variable	Variables are data values that can change when the user is asked a question, for example, their age. Variables may change during program execution. A variable is a memory location
Constant	Data values that stay the same every time a program is executed are known as constants. Constants are not expected to change. Literal constants are actual values fixed into the source code
Data Type	A data type or simply type is an attribute of data which tells the compiler or interpreter how the programmer intends to use the data.
Syntax	The syntax of a computer language is the set of rules that defines the combinations of symbols that are considered to be correctly structured
IDE	An integrated development environment (IDE) is software for building applications that combines common developer tools into a single graphical user interface

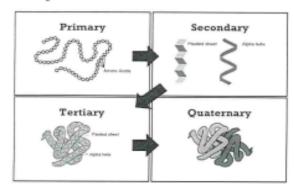
Definition

W/C 15th April Micronutrients Minerals

Minerals

Nutrient	Function	Sources
Calcium	Helps to build and maintain strong bones and teeth.	Dairy, calcium-fortified dairy- alternatives, canned fish (where soft bones are eaten) and bread.
Iron	Helps to make red blood cells, which carry oxygen around the body.	Offal, red meat, beans, pulses, nuts and seeds, fish, quinoa, wholemeal bread and dried fruit.
Phosphorus	Helps to build strong bones and teeth and helps to release energy from food.	Red meat, poultry, fish, milk, cheese, yogurt, eggs, bread and wholegrains.
Sodium	Helps regulate the water content in the body.	Very small amounts found in foods. Often added as salt.
Fluoride	Helps with the formation of strong teeth and reduce the risk of tooth decay.	Tap water, tea (and toothpaste).
Potassium	Helps regulate the water content in the body and maintain a normal blood pressure.	Some fruit and vegetables, dried fruit, poultry, red meat, fish, milk and wholegrain breakfast cereals.
lodine	Helps to make thyroid hormones. It also helps the brain to function normally.	Milk, yogurt, cheese, fish, shellfish and eggs.

W/C 29th April Micronutrients – Vitamins and Minerals


Vitamins

Nutrient Function		Sources
Vitamin A Helps the immune system to work		Liver, cheese, eggs, dark green
	as it should and with vision.	leafy vegetables and orange-
		coloured fruits and vegetables.
B vitamins	Thiamin, riboflavin, niacin, folate,	Different for each B Vitamin.
	and vitamin B12 have a range of	
	functions within the body.	
Vitamin C	Helps to protect cells from	Fruit (especially citrus fruits),
	damage and with the formation of	green vegetables, peppers and
	collagen.	tomatoes.
Vitamin D	Helps the body to absorb calcium	Oily fish, eggs, fortified breakfast
	& helps to keep bones strong.	cereals and fat spreads.
Vitamin E	Helps to protect the cells in our	Vegetable and seed oils, nuts and
	bodies against damage.	seeds, avocados and olives.
Vitamin K	Needed for the normal clotting of	Green vegetables and some oils
	blood and is required for normal	(rapeseed, olive and soya oil).
	bone structure.	

Proteins

Macromolecules built of thousands of amino acids bonded together into long chains Amino acids → peptides → polypeptides (proteins)

The structure of proteins:

Functional and chemical properties:

- 1. Denaturation damage to the protein's structure caused by:
 - Heat during cooking, proteins vibrate quickly and as a result hydrogen bonds in them rupture
 - Acid because hydrogen atoms from the acid bind with nitrogen from the protein, preventing it from forming hydrogen bonds within protein molecule and so it cannot form a 3D structure
 - or mechanical action (physical) during whisking, protein uncoils and exposes hydrophobic areas, which stick together and form a foam
- Coagulation aggregation of protein particles into larger lumps, causing it to set. Examples of protein coagulation include cheese becoming rubbery when overheated and egg whites becoming solid when cooked.

During cooking, the protein in eggs coagulates and denatures, and causes the eggs to set.

- Syneresis leakage of water from overcooked (and over-coagulated) proteins. Usually associated with eggs.
- Gluten formation complex, net-like protein built of glutenin and gliadin, simple proteins present in wheat, rye, barley and oats; the two proteins cross-link with each other, creating a net (as in a sweater) which can hold air bubbles during proving and baking of bread and bakery products
 - glutenin + gliadin + water → gluten net → soft, springy texture
- Foam formation air bubbles trapped in a liquid (e.g. egg white).
 Whisking makes proteins unravel and denature.

16

്യൂയ്Sustainability in Design YEAR 9

Wb 15 th April The Six Rs		
Reduce	minimise the amount of energy and resources used in the manufacture of a product – this will help protect valuable resources	
Reuse	Reuse the whole or part of a product for something else so you don't need to throw it away	
Recycle	separate the materials of a product and reprocess them so you can use the material again to make a new product – uses far less energy than making the material from raw materials. E.g. aluminium uses only 5% of energy to recycle compared to manufacturing from ore	
Rethink	design a product in a different way so it has less of an impact on the environment whether in manufacture or use	
Refuse	do not buy products or materials that are unsustainable	

Wb 29th April

d of throwing products away, mend them

Villa Savoye by Corbusier 1931

Designers were focused on producing House of Falling affordable, functional designs that highlighted simple shapes and forms and made a feature out of the materials 1935

Water by Architect

Chrysler Building Building in New York City •Architect: William Van Alen

Longaberger Basket Company HQ,1997

Art Deco was highly decorative and used lots of patterns.

Ordos Museum in China, appropriately designed by MAD,

L.C.A. Life Cycle Assessment

Also called 'Life Cycle Analysis' and abbreviated to LCA, this is a tool that allows the assessment of the environmental impact of a product from its origin to disposal. Here are five of the main areas that can be assessed:

Raw Materials	Extraction of materials to make products will impact the environment – mining, deforestation, pollution from machinery, impact on communities, natural habitats
Manufactur e	Make the materials and products. Factories use energy to make products, give off emissions like CO ² , waste disposal
Transport	Materials taken to factories, components transported between factories, products distributed to warehouses or shops, imported from/exported to other countries
Use	Use the products. Some products will let off emissions, pollution or use energy – batteries, charging, electricity etc.
Disposal	Whether the product can be recycled, reused or if it goes to landfill or requires specialist disposal (hazardous goods)

Design and Technology - METALS HT5 GGA

w/b 13th May

out ivietal Categor	162 Mp. 13 Mp.					
Ferrous metals	Non- Ferrous Metals	Alloys	Tools and Equipment			
Ferrous metals contain Iron. Most commonly used metals – High melting point of 1600°C or higher and most are silvery grey in	Non-Ferrous metals have very good corrosion resistance (Don't rust) but they can Tarnish. They are Non-Magnetic. So when sorting metals for recycling they can be separated using magnets Wb. 29 th Apr	Most metals are used as Alloys. They can be both Ferrous and Mon Ferrous Alloys. An Alloy is a mixture of two or more	<u>Scriber</u> – Used for scribing a design on to metal once the surface has had engineers blue ink applied to it and allowed to dry.			
colour Most Ferrous metals have poor corrosive resistance (can rust) and are magnetic		metals created by melting the metals and adding them together	<u>Centre Punch</u> - Used to for an indent into the metal surface in order to locate the position for the drill prior to drilling a hole			
<u>Cast Iron</u> – Good Hardness and compressive strength. Poor Tensile strength and brittle under tension	Aluminium – Good strength to weight ratio. Lighter in weight than steel – but not as strong Can be cast and formed into shape easily.	Brass – (Non Ferrous alloy) Mixture of Copper and Zinc Low friction, Corrosion resistant, Malleable	Engineers Square – Used to mark out a 90° angle perpendicular to an face edge or face side. Check the corners are at right angles			
Low Carbon Steel – Tough, less expensive, easy to machine. Prone to corrosion	<u>Copper</u> - Excellent conductor of heat and electricity – prone to tarnishing	Stainless Steel – Ferrous Alloy Iron and Chromium & Carbon – Tough, hard, corrosion resistance	<u>Junior Hacksaw -</u> used to cut thin sheets of metal and small diameter rods			
High Carbon Steel – Very Strong, More brittle, Less Ductile than low carbon steel	Zinc – Hard, Brittle, but becomes malleable between 100 -150°C & has a relatively low meting point 419.5°C	High carbon Steel - (HSS) Small amounts of other metals, inc. Carbon, Tungsten, Molybdenum, - Very hard, even at higher temperatures – Tools can	Polishing wheel/ Buffing machine used to polish metal to improve the appearance of the metal to make it more shiny			

cut faster, Tough but

SAMBA

Samba is a musical genre and dance style with its roots in Africa via the West African slave trade and African religious traditions. Samba is an expression of Brazilian cultural expression and is a symbol of carnival. Samba schools formed and compete bringing people together.

A. Key Words and Terms in Samba Music

CALL AND RESPONSE – one person plays or sings a musical phrase, then another person/group responds with a different phrase or copies the first one.

Section a w.c. 15th April

CYCLIC RHYTHM – a rhythm that is repeated over and over again.

IMPROVISATION – making up music as you go along, without preparation.

OSTINATO - a repeated pattern. Can be rhythmic or melodic; usually short.

PERCUSSION - Instruments that are mostly hit, scraped or shaken to produce sound. Samba uses many percussion instruments which together are called a BATERIA.

POLYRHYTHM – the use of several rhythms performed simultaneously, often overlapping each other to create a thick texture.

PULSE – a regular beat that is felt throughout music

RHYTHM - a series of notes of different lengths that create a pattern. Usually fits with a regular beat or pulse.

SYNCOPATION – accenting or emphasising the weaker beats of the bar (often a half beat (quaver) followed by a full beat (crotchet)) giving the rhythm an OFFBEAT feel.

SAMBISTA – the leader of a Samba band or ensemble, often signalling cues to the rest of the band of when to change sections within the music with an APITO (Samba whistle)

B. Form and Structure of Samba

Section B - w.c. 29th April

Samba music often starts with an INTRODUCTION often featuring CALL AND RESPONSE RHYTHMS between the Samba Leader and ensemble. The main Ostinato rhythm of Samba is called the GROOVE when all the instruments of the Samba Band play their respective rhythms over and over again (CYCLIC RHYTHMS) forming the main body of the piece. The GROOVE is broken up by BREAKS - 4 or 8 beat rhythms providing contrast and MID SECTIONS — one or two instruments change the rhythm of their ostinato and the others stay the same or stop. Sometimes BREAKS and MID SECTIONS feature a SOLOIST who "shows off" their rhythms. The SAMBISTA must signal to the group when to change to a different section which is normally done with an APITO (Samba Whistle — loud!). A piece of Samba can end (this section is called the CODA) with either a CALL AND RESPONSE pattern or a pre-rehearsed ending phrase of rhythm. The FORM AND STRUCTURE of a piece of Samba may look like the following:

Intro	Groove	Break	Groove	Mid-Section	Groove	Mid-Section	Groove	Break	Groove	Coda	
C. Texture of Samba Music				D. Dynamics of Samba Music			<u>E.</u>	E. Tempo of Samba Music			
Texture varies in Samba music, often MONOPHONIC where a single The					The dynamics of Samba music are normally VERY LOUD – it is				Samba music is generally FAST at around 104		
rhythm is heard as in CALL AND RESPONSE sections, sometimes			music design	music designed to be performed outdoors at carnivals and is				bpm and keeps a constant tempo to assist the			
POLYPHONIC where sections of the Samba band play different				played by la	played by large numbers of instrumentalists and to accompany				dancers or processional nature of the music.		
rhythms (OSTINATOS) creating CROSS-RHYTHMS (when two rhythmic				dancers and	dancers and processions with large audiences watching and				Sometimes the SAMBISTA (Samba leader) uses		
patterns that "conflict" with each other occur simultaneously)			listening. So	listening. Sometimes, a CRESCENDO is used at the end of a piece				(TEMPO) RUBATO – tiny fluctuations in tempo			
creating a thick texture of interweaving and interlocking rhythms – a			of Samba m	of Samba music for dramatic effect.				for expressive effect.			
POLYRHYHM or a POLYRHYTHMIC TEXTURE.				Sections C, D & E – w.c. 13th May							
F. Instruments, Timbres and Sonorities of Samba											

